عدد احاطه گر علامت دار در گرافها

thesis
abstract

در این پایان نامه عدد احاطه گر علامت دار راسی (یالی) معرفی می شود و مقدار ان برای بعضی از گرافها محاسبه می گردد. همچنین وجود کرانهایی را برای عدد احاطه گر علامت دار ، اثبات می کنیم . سپس عدد احاطه گر علامت دار اجباری راسی را تعریف کرده و مقدار ان را برای بعضی از گرافها بدست می اوریم و در پایان مفهوم ان را به یالها تعمیم می دهیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

نکاتی در خصوص پایداری احاطه گر رومن علامتدارتام در گرافها

چکیده :فرض کنیم ‌ یک گراف ساده و متناهی با مجموعه رئوس است. یک تابع احاطه گر رومن علامتدار تام روی گراف یک تابع مانند است بطوریکه: الف) برای هر ، ب) هر رأس با ویژگی مجاور با حداقل یک رأس با است. وزن یک برای تابع برابر تعریف می شود. عدد احاطه گر رومن علامتدار تام برای را که با نمایش می دهیم برابر می نیمم وزن تمام ها روی است. عدد پایداری احاطه گر رومن علامتدار تام در گراف که با نمایش داده می شود ...

full text

توابع احاطه گر علامت دار در گرافها و گرافهای جهت دار

فرض کنید یک گراف ساده با مجموعه رئوس مجموعه یالهای باشد. همسایگی باز رأس عبارت است از و همسایگی بسته آن برابر است با . فرض کنید یک تابع حقیقی مقدار بر باشد. در این صورت را وزن تابع می نامند. تابع را یک تابع احاطه گر (تام) علامت دار در نامند هرگاه به ازای هر ، ( ). مینیمم وزن در میان تمام توابع احاطه گر (تام) علامت دار را عدد احاطه ای (تام) علامت دار نامیده و با ( ) نشان می دهند. تابع احاطه گر (...

15 صفحه اول

عدد احاطه کننده موضعی در گرافها

بدست اوردن مجموعه های احاطع کننده های موضعی در گرافها وبدست اوردن مینیمم انمدازه ان در چند گراف خاص

بررسی عدد احاطه ای رومی در گرافها

مجموعه های احاطه ‏‏گر موضوعی کاربردی و گسترده در نظریه ی گراف می باشد که به صورت های گوناگونی تعمیم یافته و مورد مطالعه قرار گرفته است. زیرمجموعه ی ‎$s$‎ از ‎$‎v(‎g)$‎ را یک مجموعه‎‏ ی احاطه ‏گر گویند هرگاه ‎$n[s]=v(g)$‎. کمترین اندازه ممکن برای یک مجموعه ی احاطه گر را عدد احاطه ای گویند و با ‎$gamma(g)$‎ ‎‏نمایش می دهند. تابع ‎$f:v(g) ightarrow {0,1‎, ‎2}$‎ را یک تابع احاطه گر رومی روی...

15 صفحه اول

عدد احاطه ای مهار شده در گرافها

فرض کنید g = (v;e) گرافی با مجموعه رئوس v و مجموعه یالهای e باشد. مجموعه d از از رئوس گراف g یک مجموعه احاطه گر است هرگاه هر عضو v-d با راسی از d مجاور باشد. مجموعه d از رئوس گراف g یک مجموعه احاطه گر مهار شده است هرگاه هر راسی که در d نیست با راسی از d و راسی از v-d مجاور باشد. عدد احاطه ای مهار شده g یعنیr(g) مینیمم اندازه یک مجموعه احاطه گر مهار شده در g است. در این پایان نامه کرانهایی برایr...

15 صفحه اول

مجموعه های احاطه گر مستقل در گرافها

در این پایان نامه، نتایج برگزیده ای از مجموعه های احاطه گر مستقل در گراف ها بررسی شده است. این نتایج کلید ایجاد روابط بین عدد احاطه گری مستقل و سایر پارامترها از جمله: عدد احاطه گری، عدد استقلال و عدد رنگی می باشد. علاوه بر این، این نتایج کران بالای بهینه ای روی عدد احاطه گری مستقل در شرایطی از مرتبه خودش، مرتبه و ماکسیمم درجه، مرتبه و مینیمم درجه را می سازند. نتایج وابسته به ساختار گراف های اح...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023